Elektrifizierte Antriebe

Automobilhersteller und Zulieferer stehen bei den Komponenten für Elektromotoren vor neuen Herausforderungen. Wie groß diese sind, zeigt das Beispiel des Gehäuses eines Elektromotors: Im Vergleich zu einem Getriebegehäuse muss dieses innerhalb deutlich engerer Toleranzen gefertigt werden, da die Genauigkeit entscheidenden Einfluss auf den Wirkungsgrad des Elektromotors nimmt.

Zudem ist das E-Motorgehäuse durch den speziellen Aufbau, wie zum Beispiel integrierte Kühlkanäle, meist deutlich dünnwandiger als ein Getriebegehäuse. In einigen dieser Gehäuse sind darüber hinaus Lagerbuchsen aus Stahlwerkstoffen eingepresst. Spezielle Protektionsschilder im Werkzeug sorgen dafür, dass bei der Bearbeitung Stahlspäne nicht in Berührung mit den Aluminumoberflächen kommen und diese beschädigen.

Zerspanungsanforderungen & Merkmale verschiedener Gehäusearten


Grundlegende Vorgehensweise bei der Bearbeitung von Statorgehäusen

Der Bearbeitungsprozess sowie die Werkzeuge werden je nach Aufmasssituation, dem Maschinenpark und der Aufspannung individuell ausgelegt. So werden die auf das Bauteil wirkenden Schnittkräfte möglichst geringgehalten. Die Bearbeitung der Statorbohrung ist dabei in drei Schritte unterteilt: Vorbearbeitung, Semi-Finishbearbeitung und Fertigbearbeitung.
Prozesskette Stator Bearbeitung Vorbearbeitung, Semi-Finish-Bearbeitung, Fertigbearbeitung
Statorgehäuse außenbearbeitung

Außenbearbeitung von Statorgehäusen

Die Außenbearbeitung von Statorgehäusen für Elektromotoren stellt eine anspruchsvolle Aufgabe dar. Diese Gehäuse, oft in rohr- oder topfförmiger Bauweise, sind entscheidend für die Effizienz des Elektromotors. Während des Prozesses müssen mehrere Herausforderungen bewältigt werden. Die dünnwandigen Aluminiumgehäuse mit integrierten Rippen für den Kühlkreislauf erfordern höchste Präzision in Bezug auf Durchmessergenauigkeit, Form- und Lagetoleranzen. Die Konzentrizität zwischen verschiedenen Durchmessern ist von großer Bedeutung.

Vorbearbeitung
  • Helixfräser mit ISO-Wendeschneidplatten

    Helix milling cutter with ISO indexable inserts

    Roughing of outer diameter and surface

    • Coated ISO indexable inserts made of carbide or PCD-tipped indexable inserts
    • Reduced cutting forces
    • Standard product
    • HSK extension for different machining depths

  • ISO BORING TOOL Roughing of outer diameter

    ISO boring tool

    Roughing of outer diameter

    • Multi-stage bell tool for external machining
    • ISO indexable inserts

  • MILLING CUTTER WITH ISO INDEXABLE INSERTS

    Milling cutter with ISO indexable inserts

    Roughing the sealing groove

    • Coated ISO indexable inserts made of carbide
    • Optionally with vibration damper
    • Effective roughing of the sealing grooves

Finish machining
  • PCD MILLING CUTTER WITH SPECIAL CONTOUR

    PCD milling cutter with special contour

    Finishing the sealing groove

    • PCD form cutting edge
    • Perfect geometry of the individual recess contours
    • Optionally with vibration damper
    • Finish machining of all recesses in a single cut

  • PCD MILLING CUTTER WITH SPECIAL CONTOUR Finishing the sealing groove

    Lightweight fine boring tool

    Finishing the outer diameter

    • Adjustable PCD cutting edges
    • Lightweight tool body
    • Up to Ø 260 mm machining diameter


Machining solutions for...

MAPAL Basic, Performance, Expert Line

Weitere Bearbeitungslösungen

  • Lager- und Positionsbohrungen

    Mit höchster Konzentrizität und Rundheit

    mehr erfahren
  • Außenreibahle mit EA-System

    Außenbearbeitung Lagerbohrung

    Außenreibahle mit EA-System

    • Außenbearbeitung Lagerbohrung

  • Planfräser mit PKD-Fräseinsätzen

    Dicht- und Anlageflächen

    Planfräser mit PKD-Fräseinsätzen
    • Erzeugung definierter Oberflächenprofile für Dicht- und Anlageflächen (z.B. Kreuzschnittstrukturen)
    • Oberflächengüte Rz < 1


Weitere elektrifizierte Komponenten