Gehäuse für die Energieversorgung

Batteriewanne und Leistungselektronik in CAD Darstellung

Für den Schutz elektronischer Bauteile, wie beispielsweise Batteriesystem oder Leistungselektronik, vor äußeren Umwelteinflüssen und zur Fixierung der Komponenten im Innenraum, um deren störungsfreie Funktion während des Fahrzeugbetriebes zu gewährleisten, werden unterschiedliche Gehäuse eingesetzt. Die Anforderungen an die Gehäuse sind abhängig vom elektronischen System und Antriebskonzept. Aktuell kommen unterschiedliche Werkstoffe und Fertigungsverfahren zum Einsatz.

MERKMALE

  • Labile, dünnwandige Bauteile (vibrationsanfällig)
  • Aufbau als gegossene Wanne oder als Rahmenkonstruktion aus Hohlprofilen
  • Teilweise niedrig-siliziumhaltiges Aluminium
  • Großflächig (2 x 3 m)
  • Hauptsächlich Bohr- und Fräsoperationen und Gewinden
  • Genauigkeits- und Oberflächenanforderungen bei Kabeldurchführungen und Kühlanschlüssen


Werkzeugübersicht

  • Werkzeugübersicht zur Bearbeitung von Strukturbauteilen aus Aluminium
    1 / 9

    Standardprogramm zur Bearbeitung von Strukturbauteilen aus Aluminium

    • Hoch positive Schneidengeometrie
    • Reduzierte Schnittkräfte
    • Vibrationsarmer Schnitt
  • OptiMill-SPM-Rough
    2 / 9

    OptiMill-SPM-Rough

    • Vibrationsarmes Schruppen mit großer Schnitttiefe
  • OptiMill-SPM
    3 / 9

    OptiMill-SPM

    • Ideal zur Herstellung von Durchbrüchen oder Taschen
    • Ausführung aus Vollhartmetall oder mit gelöteten PKD-Schneiden
  • OptiMill-SPM-Finish
    4 / 9

    OptiMill-SPM-Finish

    • Schlichten von großen Tiefen in einem Zug
    • Starke Performance bei hohen Umschlingungen
  • Tritan-Drill-Alu
    5 / 9

    Tritan-Drill-Alu

    • Herstellung von Kernlochbohrungen
    • Drei Schneiden für höchste Vorschübe
    • Höchste Positioniergenauigkeit durch selbst zentrierende Querschneide
  • BOHREN MIT GERINGER ZYKLUSZEIT  VHM-Bohrer MEGA-Drill-Alu
    6 / 9

    MEGA-Drill-Alu

    • VHM-Bohrer
    • Bohren mit geringer Zykluszeit
    • Fokus auf Spanbildung
    • Effektive Bohrprozesse bei größerer Anzahl an gleichen Durchmessern
  • ROUGHING AND FINISHING OF FACE SURFACES ƒ FaceMill-Diamond-ES PCD face milling cutter
    7 / 9

    FaceMill-Diamond-ES

    • PKD-Planfräser
    • Schruppen und Schlichten von Planflächen
    • Planflächen mit unterschiedlichem Aufmaß mit einem Werkzeug bearbeiten
    • Schrupp- und Schlichtoperationen möglich
  • MILLING VARIOUS DIAMETERS ƒ OptiMill-Diamond-SPM PCD milling cutter
    8 / 9

    OptiMill-Diamond-SPM

    • PCD milling cutter
    • Circular milling operations of various diameters and surfaces
    • Less tool changes thanks to flexible tool deployment
  • Corner Milling cutter Pocket milling of aluminium materials
    9 / 9

    OptiMill-Alu-HPC-Pocket

    • Corner milling cutter
    • Pocket milling of aluminium materials
    • Optimum chip removal
    • Optimum stability
  • PCD milling cutter overview
    1 / 5

    PCD milling cutter overview

  • PCD milling cutter with alternately arranged cutting edges
    2 / 5

    PCD milling cutter with alternately arranged cutting edges

    • Low cutting forces over the entire machining depth
  • Spiralled PCD milling cutter
    3 / 5

    Spiralled PCD milling cutter

    • Finishing of thin-walled structures
  • PCD Helix milling cutter
    4 / 5

    PCD Helix milling cutter

    • Trimming with a large cutting depth
  • PCD face milling cutter
    5 / 5

    PCD face milling cutter

    • Face milling for a cutting depth of up to 10 mm
    • Creation of defined surface profiles for sealing and contact surfaces

Case studies from the energy supply sector


Other electrified components