Für den Schutz elektronischer Bauteile, wie beispielsweise Batteriesystem oder Leistungselektronik, vor äußeren Umwelteinflüssen und zur Fixierung der Komponenten im Innenraum, um deren störungsfreie Funktion während des Fahrzeugbetriebes zu gewährleisten, werden unterschiedliche Gehäuse eingesetzt. Die Anforderungen an die Gehäuse sind abhängig vom elektronischen System und Antriebskonzept. Aktuell kommen unterschiedliche Werkstoffe und Fertigungsverfahren zum Einsatz.
MERKMALE
Labile, dünnwandige Bauteile (vibrationsanfällig)
Aufbau als gegossene Wanne oder als Rahmenkonstruktion aus Hohlprofilen
Teilweise niedrig-siliziumhaltiges Aluminium
Großflächig (2 x 3 m)
Hauptsächlich Bohr- und Fräsoperationen und Gewinden
Genauigkeits- und Oberflächenanforderungen bei Kabeldurchführungen und Kühlanschlüssen
Aufgrund der zunehmenden Größe der Batterie kommen modulare Konzepte für unterschiedliche Leistungsklassen und Reichweiten zum Einsatz. Hierzu werden Extrusionsprofile aus Aluminium zu einem Gehäuse verschweißt.
ZERSPANUNGSANFORDERUNGEN
Dünnes Material mit mehreren Lagen
Bohren: Vibrationen und Gratbildung. Ringbildung am Werkzeug → Helixfräsen / Orbitalbohren verhindert Gratbildung und Ringe
Fräsen: Dünnes Material neigt zum Aufschwingen → Weniger Vibrationen durch optimierte Schneidengeometrie
Für die Unterbringung der Leistungselektronik oder kleinere Batteriesysteme für Hybridfahrzeuge werden meist Druckgussgehäuse aus Aluminium verwendet. Die komplexen Gehäusestrukturen werden mit integrierten Kühlkanälen ausgeführt.
ZERSPANUNGSANFORDERUNGEN
Fräsen von Dichtflächen (teilweise spezielle Oberflächenanforderungen)
Fräsen von Aufnahmeflächen für Elektronik und Batteriezellen bei langer Werkzeugauskragung
Bohren von Kernlöchern (> 50 Bohrungen pro Bauteil)
Werkzeugübersicht
1 / 9
Standardprogramm zur Bearbeitung von Strukturbauteilen aus Aluminium
Hoch positive Schneidengeometrie
Reduzierte Schnittkräfte
Vibrationsarmer Schnitt
2 / 9
OptiMill-SPM-Rough
Low vibration roughing with deep cutting depth
3 / 9
OptiMill-SPM
Ideal for making openings or pockets
Solid carbide design or with brazed PCD cutting edges
4 / 9
OptiMill-SPM-Finish
Finishing of great depths in one go
Strong performance with high wraps
5 / 9
Tritan-Drill-Alu
Creation of core holes
Three cutting edges for the highest feed rates
Highest positioning accuracy through self-centring cross cutting edge
6 / 9
MEGA-Drill-Alu
Solid carbide drill
Drilling with lower cycle time
Focus on chip formation
Effective drilling processes with a larger number of equal diameters
7 / 9
FaceMill-Diamond-ES
PCD face milling cutter
Roughing and finishing of face surface
Machining face surfaces with different stock removal using a single tool
Roughing and finishing operations possible
8 / 9
OptiMill-Diamond-SPM
PCD milling cutter
Circular milling operations of various diameters and surfaces
Less tool changes thanks to flexible tool deployment
9 / 9
OptiMill-Alu-HPC-Pocket
Corner milling cutter
Pocket milling of aluminium materials
Optimum chip removal
Optimum stability
1 / 5
PCD milling cutter overview
2 / 5
PCD milling cutter with alternately arranged cutting edges
Low cutting forces over the entire machining depth
3 / 5
Spiralled PCD milling cutter
Finishing of thin-walled structures
4 / 5
PCD Helix milling cutter
Trimming with a large cutting depth
5 / 5
PCD face milling cutter
Face milling for a cutting depth of up to 10 mm
Creation of defined surface profiles for sealing and contact surfaces
Warum Fräsen anstelle von Bohren eine sinnvolle Alternative sein kann? MAPAL zeigt, wie höhere Prozesssicherheit und kürzere Bearbeitungszeiten erreicht werden.